STA360
  • schedule
  • syllabus
  • distributions
  • notes
  • links

Bayesian methods and modern statistics

Fall 2024

Schedule

Week Date Topic Reading Notes Assignment
1 Mon Aug 26 intro, history, notation Ch. 2 hw 0
Wed Aug 28 probability, exchangeability Ch. 2 🗒 📝 hw 1
Thu Aug 29 lab: welcome 💻 hello R
2 Mon Sep 02 NO CLASS Ch. 3
Wed Sep 04 beta-binomial model Ch. 3 🗒 📝 hw 2
Thu Sep 05 lab: MLE and MAP estimator 💻
3 Mon Sep 09 Poisson-gamma model, exp families Ch. 3 🗒 📝
Wed Sep 11 reliability (conf. intervals, hpd, Laplace approx.) Ch. 3 🗒 📝 hw 3
Thu Sep 12 lab: exp. families and transformations 💻
4 Mon Sep 16 intro to Monte Carlo Ch. 4 🗒 📝
Wed Sep 18 predictive checks and MC error Ch. 4 🗒 hw 4
Thu Sep 19 lab: mixture densities 💻
5 Mon Sep 23 the normal model Ch. 5 🗒📝
Wed Sep 25 the normal model II Ch. 5 📝
Thu Sep 26 lab: normal data 💻
6 Mon Sep 30 review
Wed Oct 02 Exam I
Thu Oct 03 NO LAB
7 Mon Oct 07 Metropolis algorithm Ch. 10 🗒
Wed Oct 09 MCMC diagnostics Ch. 6 🗒 hw 5
Thu Oct 10 lab: Metropolis algo. 💻
8 Mon Oct 14 NO CLASS
Wed Oct 16 wrap-up diagnostics and MH Ch. 6, 10 📝
Thu Oct 17 lab: MCMC and conf. bands 💻
9 Mon Oct 21 Gibbs sampling Ch. 6 🗒
Wed Oct 23 multivariate normal Ch. 7 🗒 hw 6
Thu Oct 24 lab: MCMC diagnostics 💻
10 Mon Oct 28 intro to Bayesian regression Ch. 9 🗒📝
Wed Oct 30 Bayesian regression II Ch. 9 🗒 hw 7
Thu Oct 31 lab: rstanarm 💻
11 Mon Nov 04 estimators Ch. 5 sec. 4 🗒📝
Wed Nov 06 hierarchical modeling Ch. 8 🗒📝 hw 8
Thu Nov 07 lab: estimators 💻
12 Mon Nov 11 review
Wed Nov 13 Exam II
Thu Nov 14 NO LAB
13 Mon Nov 18 priors 🗒
Wed Nov 20 Bayesian inverse problems 📖 🗒 hw 9
Thu Nov 21 lab: Bayesian inverse practice 💻
14 Mon Nov 25 Hamiltonian Monte Carlo 📖 🗒
Wed Nov 27 NO CLASS
Thu Nov 28 NO CLASS
15 Mon Dec 02 model averaging Ch. 9 sec. 3 🗒
Wed Dec 04 practice for final 🗒
Thu Dec 05 lab: review